

Welcome to pytempus’s documentation!

Getting started

This project provides Python bindings for the Tempus [http://ifsttar.github.io/Tempus/] framework and some example codes to illustrate the way it should be used.

Contents:

	Tempus main bindings
	Load a plugin

	Load a graph

	Do routing requests

	Isochrone plugin
	Module preparation

	Tempus initialization

	Connection to database

	Plugin loading

	Routing request

	Result exploitation

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

Tempus main bindings

This page contains a definition of the existing wrappers that were defined for
a range of seminal Tempus functions. These wrappers are stored in module
tempus.__init__.

Load a plugin

Load a graph

Do routing requests

This class is defined to contain the routing request results. It is a wrapper that allow to consider the request itself associated with its result.

A binding function request is defined by exploiting this class as follows:

Isochrone plugin

One possibility to test Python version of Tempus is the ̀isochrone` plugin. This page summarizes the code in test_isochrone.py module. It tests the Tempus isochrone plugin by running a simple isochrone request starting from a random node in the network.

Computing an isochrone needs to compute travel times to reach every other nodes
from the starting node, and to compare these travel times to a fixed time
limit: the isochrone is the set of nodes reachable in this amount of time

Module preparation

To run the testing module, some other modules must be loaded.

	1
2
3
4
5
6
7
8
9

	from datetime import datetime
import random

import psycopg2

import tempus
from tempus import Cost, Request

import utils

In addition to tempus, datetime is useful for setting up a time constraint with the request, random is called to print a roadmap from the origin node to a random destination node within the isochrone. psycopg2 seems unavoidable, as a database connection is required to consider valid origin node and transportation mode. Finally, utils contains some useful functions in the testing scope, see Utilities.

Tempus initialization

As a mandatory step before computing isochrones, the tempus framework must be initialized.

tempus.init()

Connection to database

Then a connection to the database can be opened. First a database option variable is set as follows in utils.py:

g_db_options = os.getenv('TEMPUS_DB_OPTIONS', 'dbname=tempus_test_db')

This variable is used by psycopg2 for database connection:

	1
2

	 conn = psycopg2.connect(utils.g_db_options)
 cursor = conn.cursor()

Note

At this point, it is crucial to remind that the database option declaration is a prerequisite to database connection. That supposes that an environment variable TEMPUS_DB_OPTIONS was declared before running the Python module. By default, this variable equals dbname=tempus_test_db, however its value may be changed by hand with a command similar to:

export TEMPUS_DB_OPTIONS="dbname=<dbname> port=<port> user=<user> password=<pwd>"

Plugin loading

As the goal here is to compute isochrones, the corresponding plugin is then loaded to be exploited in the following section.

plugin = tempus.load_plugin({'db/options': utils.g_db_options}, plugin_name="isochrone_plugin")

The database options are called again: the requests will be run in the same database than the one which received an ad hoc connection.

Note

The plugins currently have a second option, namely db/schema. It is not mentionned here as the default value is considered, i.e. tempus. As a consequence, the request will be solved with data stored in tables tempus.road_node, tempus.road_section and so on…

Routing request

After loading the plugin, then comes the routing query solving, which is fairly the main part of the isochrone computation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 # prepare the request
 origin = utils.sample_node(cursor) # Consider a random node
 constraint = \
 Request.TimeConstraint(type=Request.TimeConstraintType.ConstraintAfter,
 date_time=datetime(2016,10,21,6,43))
 step = Request.Step(constraint=constraint)
 iso_limit = 20.0
 db_modes = utils.get_transport_modes(cursor)
 print("Available transport modes in the database: {}".format(db_modes))
 allowed_modes = [1, 3]

 print("Compute isochrone from node {} with a time threshold of {} minutes and following modes: {}".format(origin, iso_limit, [db_modes[k] for k in allowed_modes]))

 # routing request
 results = tempus.request(plugin = plugin, origin = origin, steps = [step], plugin_options = { 'Isochrone/limit' : iso_limit }, criteria = [Cost.Duration], allowed_transport_modes = allowed_modes)

The previous example brings into play a random node, a single constraint associated to the destination (the node must be reached after the 16/10/21 at 21:06:43, that kind of constraint is meaningful if public transport and/or time-dependent travel times are considered), a time threshold of 20 units to design the isochrone and two allowed modes, identified by a specific id (see tempus.transport_mode table to know the available modes).

Note

In this example, the isochrone is computed relatively to the duration criterion. As a consequence the threshold is expressed in minutes. Some other optimization criteria are thinkable, however they still are in development (see function documentation in Tempus main bindings).

Note

This example of request shows that the only used plugin options is Isochrone/limit. It has a default value of 10 units. However the isochrone plugin allows also to define:

	Time/min_transfer_time: a minimal transfer time (default value = 2 minutes),

	Time/walking_speed and Time/cycling_speed: constant walking and cycling speeds (default values of respectively 3.6 and 12km/h),

	Time/car_parking_search_time: a constant car parking search time (with default value of 5 minutes),

	Time/use_speed_profiles: a boolean (default as false) flag that indicates if speed profiles must be used,

	Time/profile_name: the speed profile name with option (which is an empty string by default),

	Debug/verbose: a debugging-purpose boolean that indicates if the processing must be verbose (false by default),

	Multimodal/max_mode_changes: the maximal number of mode changes (no constrained, by default)

	Multimodal/max_pt_changes: the maximal number of public transport changes (no constrained by default)

Result exploitation

Once the isochrone query has been solved, general results may be printed as follows:

	1
2
3
4
5

	 result_isochrone = results[0].isochrone()
 print("Resulting structure has size = {}".format(len(results)))
 print("Number of reachable nodes: {}".format(len(result_isochrone)))
 print("id, predecessor, x, y")
 print("\n".join(["{},{},{},{}".format(x.uid, x.predecessor, x.x, x.y) for x in results[0].isochrone()]))

One may consequently evaluate the number of nodes that are contained in the isochrone structure, and get their characteristics: node id, predecessor id (in the isochrone searching space), x and y coordinates.

To go further, the roadmap from the origin node to each valid destination in the isochrone may be rebuilt. The following example shows how to proceed with a random chosen destination (the principle is easily reproducible and generalizable):

	1
2
3
4
5
6
7
8

	 vertices = {x.uid: x for x in result_isochrone}
 v = random.choice(range(len(vertices)))
 print("Path between node {} and node {}:".format(origin, v))
 cost_per_mode, total_wait_time = utils.browse(vertices, v)
 print("Waiting time: {:.1f} mins".format(total_wait_time))
 print("Total cost: {:.1f} mins".format(sum(cost_per_mode.values())))
 print("Accumulated costs per mode:")
 print("\n".join("{}: {:.1f} mins".format(k,v) for k,v in cost_per_mode.items()))

Utilities

Index

Dynamic-multi plugin

This is some text to illustrate test_isochrone.py.

Sample-multi plugin

This is some text to illustrate test_isochrone.py.

Sample-road plugin

This is some text to illustrate test_isochrone.py.

 nav.xhtml

 Table of Contents

 		
 Welcome to pytempus’s documentation!

 		
 Tempus main bindings

 		
 Load a plugin

 		
 Load a graph

 		
 Do routing requests

 		
 Isochrone plugin

 		
 Module preparation

 		
 Tempus initialization

 		
 Connection to database

 		
 Plugin loading

 		
 Routing request

 		
 Result exploitation

 		
 Utilities

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

