
pytempus Documentation
Release 1.2.0

Hugo Mercier

Feb 09, 2018

Contents:

1 Getting started 1
1.1 Tempus main bindings . 1
1.2 Isochrone plugin . 1
1.3 Utilities . 4

2 Indices and tables 5

i

ii

CHAPTER 1

Getting started

This project provides Python bindings for the Tempus framework and some example codes to illustrate the way it
should be used.

1.1 Tempus main bindings

This page contains a definition of the existing wrappers that were defined for a range of seminal Tempus functions.
These wrappers are stored in module tempus.__init__.

1.1.1 Load a plugin

1.1.2 Load a graph

1.1.3 Do routing requests

This class is defined to contain the routing request results. It is a wrapper that allow to consider the request itself
associated with its result.

A binding function request is defined by exploiting this class as follows:

1.2 Isochrone plugin

One possibility to test Python version of Tempus is the isochrone‘ plugin. This page summarizes the code in
test_isochrone.py module. It tests the Tempus isochrone plugin by running a simple isochrone request starting from a
random node in the network.

Computing an isochrone needs to compute travel times to reach every other nodes from the starting node, and to
compare these travel times to a fixed time limit: the isochrone is the set of nodes reachable in this amount of time

1

http://ifsttar.github.io/Tempus/

pytempus Documentation, Release 1.2.0

1.2.1 Module preparation

To run the testing module, some other modules must be loaded.

1 from datetime import datetime
2 import random
3

4 import psycopg2
5

6 import tempus
7 from tempus import Cost, Request
8

9 import utils

In addition to tempus, datetime is useful for setting up a time constraint with the request, random is called to print a
roadmap from the origin node to a random destination node within the isochrone. psycopg2 seems unavoidable, as
a database connection is required to consider valid origin node and transportation mode. Finally, utils contains some
useful functions in the testing scope, see Utilities.

1.2.2 Tempus initialization

As a mandatory step before computing isochrones, the tempus framework must be initialized.

tempus.init()

1.2.3 Connection to database

Then a connection to the database can be opened. First a database option variable is set as follows in utils.py:

g_db_options = os.getenv('TEMPUS_DB_OPTIONS', 'dbname=tempus_test_db')

This variable is used by psycopg2 for database connection:

1 conn = psycopg2.connect(utils.g_db_options)
2 cursor = conn.cursor()

Note: At this point, it is crucial to remind that the database option declaration is a prerequisite to database connection.
That supposes that an environment variable TEMPUS_DB_OPTIONS was declared before running the Python module.
By default, this variable equals dbname=tempus_test_db, however its value may be changed by hand with a
command similar to:

export TEMPUS_DB_OPTIONS="dbname=<dbname> port=<port> user=<user> password=<pwd>"

1.2.4 Plugin loading

As the goal here is to compute isochrones, the corresponding plugin is then loaded to be exploited in the following
section.

plugin = tempus.load_plugin({'db/options': utils.g_db_options}, plugin_name=
→˓"isochrone_plugin")

2 Chapter 1. Getting started

pytempus Documentation, Release 1.2.0

The database options are called again: the requests will be run in the same database than the one which received an ad
hoc connection.

Note: The plugins currently have a second option, namely db/schema. It is not mentionned here as the default value
is considered, i.e. tempus. As a consequence, the request will be solved with data stored in tables tempus.road_node,
tempus.road_section and so on. . .

1.2.5 Routing request

After loading the plugin, then comes the routing query solving, which is fairly the main part of the isochrone compu-
tation.

1 # prepare the request
2 origin = utils.sample_node(cursor) # Consider a random node
3 constraint = \
4 Request.TimeConstraint(type=Request.TimeConstraintType.ConstraintAfter,
5 date_time=datetime(2016,10,21,6,43))
6 step = Request.Step(constraint=constraint)
7 iso_limit = 20.0
8 db_modes = utils.get_transport_modes(cursor)
9 print("Available transport modes in the database: {}".format(db_modes))

10 allowed_modes = [1, 3]
11

12 print("Compute isochrone from node {} with a time threshold of {} minutes and
→˓following modes: {}".format(origin, iso_limit, [db_modes[k] for k in allowed_
→˓modes]))

13

14 # routing request
15 results = tempus.request(plugin = plugin, origin = origin, steps = [step], plugin_

→˓options = { 'Isochrone/limit' : iso_limit }, criteria = [Cost.Duration], allowed_
→˓transport_modes = allowed_modes)

The previous example brings into play a random node, a single constraint associated to the destination (the node
must be reached after the 16/10/21 at 21:06:43, that kind of constraint is meaningful if public transport and/or time-
dependent travel times are considered), a time threshold of 20 units to design the isochrone and two allowed modes,
identified by a specific id (see tempus.transport_mode table to know the available modes).

Note: In this example, the isochrone is computed relatively to the duration criterion. As a consequence the threshold
is expressed in minutes. Some other optimization criteria are thinkable, however they still are in development (see
function documentation in Tempus main bindings).

Note: This example of request shows that the only used plugin options is Isochrone/limit. It has a default value of 10
units. However the isochrone plugin allows also to define:

• Time/min_transfer_time: a minimal transfer time (default value = 2 minutes),

• Time/walking_speed and Time/cycling_speed: constant walking and cycling speeds (default values of respec-
tively 3.6 and 12km/h),

• Time/car_parking_search_time: a constant car parking search time (with default value of 5 minutes),

• Time/use_speed_profiles: a boolean (default as false) flag that indicates if speed profiles must be used,

• Time/profile_name: the speed profile name with option (which is an empty string by default),

1.2. Isochrone plugin 3

pytempus Documentation, Release 1.2.0

• Debug/verbose: a debugging-purpose boolean that indicates if the processing must be verbose (false by default),

• Multimodal/max_mode_changes: the maximal number of mode changes (no constrained, by default)

• Multimodal/max_pt_changes: the maximal number of public transport changes (no constrained by default)

1.2.6 Result exploitation

Once the isochrone query has been solved, general results may be printed as follows:

1 result_isochrone = results[0].isochrone()
2 print("Resulting structure has size = {}".format(len(results)))
3 print("Number of reachable nodes: {}".format(len(result_isochrone)))
4 print("id, predecessor, x, y")
5 print("\n".join(["{},{},{},{}".format(x.uid, x.predecessor, x.x, x.y) for x in

→˓results[0].isochrone()]))

One may consequently evaluate the number of nodes that are contained in the isochrone structure, and get their
characteristics: node id, predecessor id (in the isochrone searching space), x and y coordinates.

To go further, the roadmap from the origin node to each valid destination in the isochrone may be rebuilt. The
following example shows how to proceed with a random chosen destination (the principle is easily reproducible and
generalizable):

1 vertices = {x.uid: x for x in result_isochrone}
2 v = random.choice(range(len(vertices)))
3 print("Path between node {} and node {}:".format(origin, v))
4 cost_per_mode, total_wait_time = utils.browse(vertices, v)
5 print("Waiting time: {:.1f} mins".format(total_wait_time))
6 print("Total cost: {:.1f} mins".format(sum(cost_per_mode.values())))
7 print("Accumulated costs per mode:")
8 print("\n".join("{}: {:.1f} mins".format(k,v) for k,v in cost_per_mode.items()))

1.3 Utilities

4 Chapter 1. Getting started

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Getting started
	Tempus main bindings
	Isochrone plugin
	Utilities

	Indices and tables

